
Running moodle.org site
on Kubernetes
Eduard Cercós
20 04 2021

Where we came from

● A single server
● Low traffic → affordable
● Split services to 2 layers: Frontend + backend
● Added load balancing in preparation for scalability

What is this!

● Kubernetes cluster for internal and external sites
○ HA master
○ several identical nodes
○ easy to scale (IaC)
○ HA services

We were prepared

● In AWS, using 3 AZ
● Multiple Nodes per Zone,

scalable
● External services like

○ Load Balancers
○ RDS

● EBS + EFS

A kubernetes cluster

● Kubernetes orchestration
Pods, services, deployments, daemonsets, ingresses
(https://kubernetes.io/docs)

Do you know it?

● Workloads:
○ Deployment,

Replicaset,
StatefulSet,
DaemonSet, Job and
CronJob
■ Pod lifecycle, PV,

Containers
■ Probes
■ Resource control

● Pods are ephemeral!!

Do you know it?

● Services and networking
○ SVC entry point for pods

(using networking
abstraction)

○ Easy plugable to load
balancers or Ingress objects

○ To intercommunicate within
the cluster

A bit more

● Design services:
○ Nginx with php-fpm (clients, cron)
○ MUC service: Redis
○ Session service: Redis
○ Database (external)
○ Preserve data

● Previous experience
○ learn.moodle.org

■ MOOC courses, ~4000 participants
■ spaced in time (low traffic)

Into the wild

● Deployments
○ Web app (nginx + PHP)
○ Cron

Solution I
 "kind": "Deployment",
 "metadata": {
 "name": "moodle-org"
 },
 "spec": {
 "replicas": 3,
 "selector": {
 "matchLabels": {
 "app": "moodle-org",
...

 "affinity": {
 "nodeAffinity": {
 ...
 "key": "failure-domain.beta.kubernetes.io/zone"
 …
 "podAntiAffinity": {

 ...
 "topologyKey": "kubernetes.io/hostname"

● Deployments:
○ Limitation to same AZ (to reduce Interzone Bandwidth)
○ Redis cache
○ Redis session

 Use them wisely! →

Solution II

"containers": [
....
 "resources": {
 "limits": {
 "cpu": 2 , “memory”: “4GiB”
 },
 "requests": {
 "cpu": "500m", “memory”: “1GiB”
 }
 },

So far

● Services
○ http
○ cache
○ session
○ No cron service!

● Ingress: moodle.org → http

Solution III
 "kind": "Service",
 "spec": {
 "ports": [
 {
 "targetPort": 80,
 "protocol": "TCP",
 "port": 80,
 "name": "http"
 }
],
 "selector": {
 "app": "moodle-org"
 }

kind: Ingress
...
 name: moodle-org
 namespace: default
spec:
 rules:
 - host: moodle.org
 http:
 paths:
 - backend:
 serviceName: moodle-org
 servicePort: 80
 path: /

● Self healing per container
○ livenessProbe (tested & used in other sites))
○ readinessProbe (wip)
○ startupProbe (wip)

Solution IV (wip)
 ...
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /
 port: 9821
 scheme: HTTP
 initialDelaySeconds: 30
 periodSeconds: 20
 successThreshold: 1
 timeoutSeconds: 5
 ...

It works!

Strengths
● Easily horizontal scaling (HPA in

progress):
kubectl scale --replicas=4

● Resource control (redis cleanup)
● CI/CD (almost) totally integrated

with kubernetes
● Short/no downtime deployments
● But still: Moodle upgrades

downtime :(

Monitoring
● Grafana + prometheus
● Loki + Graylog
● New Relic APM

Thank you!!

Eduard Cercós
DevOps Engineer

eduard@moodle.com
moodle.org Community Forums

mailto:eduard@moodle.com

Copyright 2021 © Moodle Pty Ltd

